
Stephen Checkoway

Programming Abstractions
Lecture 31: Streams 1

Announcements

Last homework is due on Wednesday, May 25 at 23:59

Final exam is optional

‣ You can take the final exam which will be similar to the midterms but without

extra credit; or

‣ You can take the average (arithmetic mean) score of exams 1 and 2 with a

maximum of 100%

‣ Either way, the final cannot push you over 100% in the course

‣ All exams contribute the same amount to your final grade

Review of delay and force

(delay exp) creates a promise which when forced evaluates exp and returns

the value

(force p) forces the promise p to obtain a value; if the promise's exp has not

been evaluated yet, it is evaluated and cached; otherwise the cached value is

returned

What is printed by this code?

(let* ([x 10]

 [y (delay x)])

 (set! x 20)

 (displayln (force y)))

A. 10

B. 20

C. It's an error

4

What is printed by this code?

(let* ([x 10]

 [y (delay x)])

 (set! x 20)

 (displayln (force y))

 (set! x 30)

 (displayln (force y)))

A. 20 

20

B. 20 

30

C. 30 

30

D. It's an error

5

Last time: infinite list of primes

First, we need to think about how we want to represent this

Let's use a cons cell where

‣ the car is a prime; and

‣ the cdr is a promise which will return the next cons cell

2 #<promise>

3 #<promise>

5 #<promise>

force

force

An infinite list is an instance of a stream

A stream is a (possibly infinite) sequence of elements

A list is a valid, finite stream

‣ (stream? '(1 2 3)) => #t

Infinite streams must be built lazily out of promises (using delay internally)

Accessing elements of a stream forces their evaluation

Let's build a stream

As with our infinite list of primes we'll use a cons-cell holding a value and a

promise

API

‣ (stream-cons head tail)

‣ (stream-first s)

‣ (stream-rest s)

‣ (stream-empty? s)

‣ empty-stream

Constructing a lazy stream
(stream-cons head tail)

We can't use a procedure because it'll evaluate head and tail

(define-syntax stream-cons

 (syntax-rules ()

 [(_ head tail) (delay (cons head (delay tail)))]))

stream-cons returns a promise which when forced gives a cons cell where

the second element is a promise

Accessing the stream
(stream-first s) (stream-rest s)

s is either a promise or a cons cell so we need to check which

(define (stream-first s)

 (if (promise? s)

 (stream-first (force s))

 (car s)))

(define (stream-rest s)

 (if (promise? s)

 (stream-rest (force s))

 (cdr s)))

We can't use first and rest because those check if their arguments are lists

Checking if a stream is empty

(define empty-stream null)

(define (stream-empty? s)

 (if (promise? s)

 (stream-empty? (force s))

 (null? s)))

Accessing the elements

We can use stream-first and stream-rest to iterate through the elements

(define (stream-ref s idx)

 (cond [(zero? idx) (stream-first s)]

 [else (stream-ref (stream-rest s) (sub1 idx))]))

Streams in Racket

These are already built-in so we don't need to write them

‣ (require racket/stream)

‣ (stream exp ...) ; Works like (list exp ...)

‣ (stream? v)

‣ (stream-cons head tail)

‣ (stream-first s)

‣ (stream-rest s)

‣ (stream-empty? s)

‣ empty-stream

‣ (stream-ref s idx)

And several others

Let's write some Racket!

Racket standard library function stream->list converts a finite-length‼ stream to

a list

‣ (stream->list (stream 1 5 3 2 8)) => '(1 5 3 2 8)

Implement this function in DrRacket using stream-empty?, stream-first,

and stream-rest

#lang racket

(require racket/stream)

(define (stream->list s)

 ...)

From lists to streams

Going from lists to streams is easy: Racket considers a list to be a stream  

> (stream? '(1 2 3))

#t

Mapping over and filtering streams

Implement the function (stream-map f s) which takes a function f and a

stream s and returns a new stream where f has been applied to each element of

s in order

‣ This must be lazy (so no converting to a list and then using map)

‣ Think about how you would implement (map f lst) and follow the same

approach but use stream-cons, stream-first, stream-rest, and

stream-empty? rather than cons, first, rest, and empty?

Implement (stream-filter f s) which returns a stream containing the

elements of s (in order) such that applying f to the element returns anything

other than #f

Next time

Infinite-length streams!

